Compositional Semantics and Analysis of Hierarchical Block Diagrams

Iulia Dragomir¹

joint work with Viorel Preoteasa 1 and Stavros Tripakis 1,2

¹Aalto University, Finland ²UC Berkeley, USA

Hierarchical block diagrams

Consist of:

- atomic components
- composed components (or subsystems)
- communication links (instantaneous)

Simulink is a HBD language for embedded control system design.

Goal: compositional semantics and analysis of HBDs

Compositional semantics and analysis of HBDs

- Compositional semantics:
 - How to translate HBDs into a formal compositional reasoning framework
- Compositional analysis:
 - Compositional verification
 - Compatibility checking

Refinement calculus for reactive systems (RCRS): a compositional reasoning framework

- Introduced in [Tripakis et al., TOPLAS 2011], and [Preoteasa et al., EMSOFT 2014]
- Formal model:
 - monotonic predicate transformers
 - 3 composition operators: serial (\circ), parallel (\parallel) and feedback (feedback)
 - refinement operator
- Allows for:
 - modeling open, non-deterministic, and non-input-receptive systems
 - modeling safety and liveness properties
 - component substitutability, reusability
 - compositional and incremental design

A non-trivial problem: translating HBDs into RCRS

A non-trivial problem: translating HBDs into RCRS Translation 1

RCRS term: feedback_a($P_A \circ (P_B \parallel \mathsf{Id}))$

A non-trivial problem: translating HBDs into RCRS Translation 2

RCRS term: feedback_c(($P_B \parallel Id$) $\circ P_A$)

A non-trivial problem: translating HBDs into RCRS Translation 3

RCRS term: feedback_{*a*,*c*}($P_A \parallel P_B$)

A non-trivial problem: translating HBDs into RCRS Questions

- What are the advantages/drawbacks of these expressions?
 → How efficiently can these terms be analyzed?
- Are these expressions semantically equivalent?

Iulia Dragomir (Aalto Univ.)

Another non-trivial problem: expansion and simplification of RCRS terms

$$\begin{split} \mathsf{DelaySum} &= \mathsf{feedback}((\mathsf{Add} \parallel \mathsf{Id}) \circ \mathsf{UnitDelay} \circ (\mathsf{Split} \parallel \mathsf{Id})) \\ \\ & \mathsf{expansion} \text{ and simplification } \ \ \, \downarrow \end{split}$$

$$\mathsf{DelaySum} = [e, s \rightsquigarrow s, s + e]$$

Contributions

Implementation of RCRS in the Isabelle theorem prover

- Translation of HBDs into RCRS
- **③** Expansion and simplification of RCRS terms in Isabelle
- Gase study: realistic Simulink model from Toyota

Outline

Context and motivation

- 2 The RCRS framework
- Translation of HBDs to RCRS
- Expansion and simplification
- 5 Implementation and evaluation
 - 6 Conclusions

Outline

Context and motivation

2 The RCRS framework

3) Translation of HBDs to RCRS

4 Expansion and simplification

5 Implementation and evaluation

Conclusions

Monotonic predicate transformers

- Classic mechanism to represent programs
- Weakest precondition semantics [Dijkstra et al.]
- Atomic Simulink components can be represented by monotonic predicate transformers (MPTs)
- Example:

$$\mathsf{Div} = \{x, y : y \neq 0\} \circ [x, y \rightsquigarrow \frac{x}{y}]$$

Composition operators

Serial composition

• Parallel composition

• Feedback composition

Composition operators

Serial composition

Parallel composition

• Feedback composition

Composition operators

Serial composition

Parallel composition

• Feedback composition

Outline

Context and motivation

2 The RCRS framework

Translation of HBDs to RCRS
 Translating atomic components
 Translating HBDs

4 Expansion and simplification

5 Implementation and evaluation

Conclusions

Outline

Context and motivation

2 The RCRS framework

Translation of HBDs to RCRS
 Translating atomic components
 Translating HBDs

4 Expansion and simplification

5 Implementation and evaluation

Conclusions

Translating (standard) atomic components

- An atomic component becomes an atomic monotonic predicate transformer.
- Examples:
 - a Div component Div = $\{x, y : y \neq 0\} \circ [x, y \rightsquigarrow \frac{x}{y}]$
 - an Add component $\mathsf{Add} = [x, y \rightsquigarrow x + y]$

Translating stateful atomic components

- Stateful atomic components define current- and next-state variables
- Example:
 - a UnitDelay component $\mathsf{UnitDelay} = [x, s \rightsquigarrow s, x]$

Atomic MPT representation

13 / 34

Translating continuous-time atomic components

- Continuous-time atomic components are discretized and parameterized by dt
- Example:
 - an Integrator component Integrator(dt) = [$x, s \rightsquigarrow s, s + x \cdot dt$]

Simulink representation

Atomic MPT representation

14 / 34

Outline

Context and motivation

2 The RCRS framework

Translation of HBDs to RCRS
 Translating atomic components
 Translating HBDs

Expansion and simplification

5 Implementation and evaluation

Conclusions

Composite monotonic predicate transformers

Translation strategies

- 3 translation strategies:
 - feedback-parallel
 - incremental
 - feedbackless

Atomic MPTs representation

17 / 34

Feedback-parallel translation

• Key idea: compose all components in parallel and then connect outputs to inputs by applying feedback operations

 $DelaySum = feedback_{f,c,a}(Add \parallel UnitDelay \parallel Split)$

Incremental translation

- Key idea:
 - sort components topologically according to dependencies in the diagram
 - compose components 1-by-1
 - for each pair of components determine which composition operator(s) to use

 $\begin{aligned} \mathsf{Aux} &= (\mathsf{Add} \parallel \mathsf{Id}) \circ \mathsf{UnitDelay} \\ \mathsf{DelaySum} &= \mathsf{feedback}_f(\mathsf{Aux} \circ (\mathsf{Split} \parallel \mathsf{Id})) \end{aligned}$

Feedbackless translation

 Key idea: eliminate feedback by replacing it with direct operations on current- and next-state variables (like for stateful atomic components)

 $\mathsf{DelaySum} = [s, e \rightsquigarrow s, s, e] \circ (\mathsf{Id} \parallel \mathsf{Add})$

Outline

Context and motivation

- 2 The RCRS framework
- 3 Translation of HBDs to RCRS
- Expansion and simplification
 - 5 Implementation and evaluation

6 Conclusions

From composite MPTs to atomic MPTs

Obtaining simplified MPTs

- \bullet Expand definitions of MPTs, \circ, \parallel and feedback
 - \rightarrow an MPT of the form $\{p\}\circ [f]$ is obtained
 - \rightarrow but formulas p and f can grow very large \ldots
- Simplify p and f using rewriting rules
- 2050 lines of Isabelle code

Compatibility checking

- Simplify the CPT to an MPT $\{p\}\circ [f]$
- \bullet Verify that p is not false
- A satisfiability problem

Outline

Context and motivation

- 2 The RCRS framework
- 3 Translation of HBDs to RCRS
- Expansion and simplification
- 5 Implementation and evaluation

Conclusions

Toolset

Publicly available at: users.ics.aalto.fi/iulia/sim2isa.shtml

Case study: Automotive Fuel Control System by Toyota

- Publicly available benchmark: http://cps-vo.org/group/ARCH/benchmarks
- Simulink model:
 - 3-level hierarchy
 - 104 blocks: 97 atomic blocks and 7 subsystems
 - 101 links of which 7 feedbacks

Compositional Semantics and Analysis of Hierarchical Block Diagrams

Evaluation results I

• Negligible translation time (< 1sec) for all 3 strategies

• Expansion/simplification time:

- feedback-parallel strategy: 15min to 1h (depending on translation options)
- incremental strategy: 10min to 14min (depending on translation options)
- feedbackless strategy: < 1min

Evaluation results I

- Negligible translation time (< 1sec) for all 3 strategies
- Expansion/simplification time:
 - feedback-parallel strategy: 15min to 1h (depending on translation options)
 - incremental strategy: 10min to 14min (depending on translation options)
 - feedbackless strategy: < 1min

Evaluation results II

• Length of the final, top-level, simplified MPT: 122k characters

NrB_Model_type_reals 7dt =
{.(si_vhl, si_vh2, si_rh, si_cf, si_qe, si_xb, si_qc1, si_pd, si_f, si_x, si_qc2, si_xd, si_ga, si_ab, si_ga, si_ga, si_ab, si_ga, si_ab, si_ga, si_ab, si_ga, si_ga, si_ab, si_ga, si_ga, si_ab, si_ga, si_
(-X(si_vhl, si_vh2, si_vh, si_cf, si_qe, si_xb, si_qcl, si_pd, si_f, si_x, si_qc2, si_xd, si_ga, si_ab, si_ga).
(si_vh1 + 1,
if si_vhl * 7dt < 3 then 0
else if 3 ≤ si_vhl * 7dt ∧ si_vh2 * 7dt * 20000 < 205223 then si_vh2 + 1 else if 3 ≤ si_vh1 * 7dt ∧ 205223 ≤ si_vh2 * 7dt * 20000 ∧ si_vh2 * 7dt < 205223 / 10000 - 7dt then si_vh2 + 1 else 0,
si m + 1, si cr + 1, e, si xo + 1, si qci + 1, si pci + 1, ir ee ≤ si xo * /dt v si r ≠ e then i else e, ir le ≤ si po * /dt v si x ≠ e then i else e,
(si dc2 * exp ((i8 * si dc1 + 18) * /dt) + 18 * (if si vhi * /dt < s then 8 else if s ≤ si vhi * /dt ∧ si vh2 * /dt * 28688 < 285223 then 1539/ / 258 else 8) * exp (i8 * si dc1 * /dt) * /dt / / exp (i8 * si dc1 * /dt)
17 0 ≤ (s1 dc2 * exp ((18 * s1 dc1 - 18) * /dt) + 18 * (17 s1 vh1 * /dt * 3 then 6 else 17 3 ≤ s1 vh1 * /dt ∧ s1 vh2 * /dt * 20000 < 205223 then 1530/ / 250 else 8) * exp (18 * s1 dc1 * /dt) / /dt
exp (10 * s1_qc1 * (dt) +
(ap 4 (ar 4 ar 4 2 ar 4 ar 4) + (ar 4) (ar 4
exp (10 * sight * rds) *
77 / 4 V
then 1 also if (si or 2 + ave (110 + si or 1 - 10 + 24t) + 10 + (if si vh) + 24t + 3 then 6 also if 3 < si vh] + 24t + si vh2 + 24t + 24088 + 295223 then 13367 / 256 also 6) + eve (10 + si or 1 + 24t) + 24t + 2
exp (10 * si pc1 * 2dt) +
44 / 5
4 0 V
(si_qc2 * exp ([10 * si_qc1 - 10) * ?dt) + 10 * (if si_vh1 * ?dt < 3 then 0 else if 3 ≤ si_vh1 * ?dt ∧ si_vh2 * ?dt * 20000 < 205223 then 13367 / 250 else 0) * exp (10 * si_qc1 * ?dt) * ?dt) /
exp (10 * si_qcl * 7dt) +
44 / 5
\leq 90 \wedge
(si_qc2 * exp ((10 * si_qc1 - 10) * ?dt) + 10 * (if si_wh1 * ?dt < 3 then 0 else if 3 ≤ si_wh1 * ?dt ∧ si_wh2 * ?dt * 20000 < 205223 then 13367 / 250 else 0) * exp (10 * si_qc1 * ?dt) * ?dt) /
exp (10 * si_qcl * 7dt) +
44 / 5
\$ 50
then G else si_xd,
s1_a0 + (11 0 ≤ (s1_qc2 * exp ((10 * s1_qc1 - 10) * (dt) + 10 * (11 s1_vn1 * (dt < s then a else 11 s ≤ s1_vn1 * (dt × s1_vn2 * (dt * 20000 < 205223 then 1350/ / 250 else 0) * exp (10 * s1_qc1 * (dt) * (dt) *
epp (10 - 51_4.1 - 100) *
49 / 2 //
(model = applies and the state of the state of the state of a state of a state of the state of t
$dd = \sqrt{5}$
< 98
70 < [si oc2 + exp ((10 + si oc1 - 10) + 7dt) + 10 + [if si vh] + 7dt < 3 then 0 else if 3 < si vh] + 7dt / si vh2 + 7dt + 20000 < 205223 then 13367 / 250 else 0) + exp (10 + si oc1 + 7dt) + 7dt / 7dt) /
exp (18 + si qc1 + 7dt) +
44 / 5) V
0 ≤ (si_qc2 + exp ((10 + si_qc1 - 10) * 7dt) + 10 + (if si_vhl * 7dt < 3 then 0 else if 3 ≤ si_vhl * 7dt ∧ si_vh2 * 7dt * 20000 < 205223 then 13367 / 250 else 0) * exp (10 * si_qc1 * 7dt) * 7dt / 7dt) /
exp (10 * ei_qc1 * 7dt) +
44 / 5 A
[[si_qc2 + exp ([10 + si_qc1 - 10] + ?dt) + 10 + (if si_vh1 + ?dt < 3 then 0 else if 3 ≤ si_vh1 + ?dt ∧ si_vh2 + ?dt + 20009 < 205223 then 13367 / 250 else 0) + exp (10 + si_qc1 + ?dt) + ?dt) /
exp (10 * si_qcl * 7dt) +
44 / 5
≤ 99
¬ (si_qc2 * exp ((10 * si_qc1 - 10) * 7dt) + 10 * (11 si_wn1 * 7dt < 3 then 0 else 17 3 ≤ si_wh1 * 7dt ∧ si_wh2 * 7dt * 20008 < 205223 then 13367 / 250 else 0) * exp (10 * si_qc1 * 7dt) * 7dt) / 250 else 0) *

Semantical equivalence of the translation strategies

- For all studied examples, including FCS, the simplified MPTs are semantically equivalent
 - \rightarrow proved in Isabelle
- Proving this in general: ongoing work

Compatibility checking

- The FCS Simulink model is proven compatible $\forall dt > 0$
- \bullet i.e., the model's simplified assert condition is satisfiable $\forall dt>0$
- $\rightarrow\,$ proved in Isabelle

All Isabelle proofs available at users.ics.aalto.fi/iulia/sim2isa.shtml

Compatibility checking

- The FCS Simulink model is proven compatible $\forall dt > 0$
- \bullet i.e., the model's simplified assert condition is satisfiable $\forall dt>0$
- $\rightarrow\,$ proved in Isabelle

All Isabelle proofs available at users.ics.aalto.fi/iulia/sim2isa.shtml

Validation by simulation

- From Isabelle we can automatically generate simulation code (in Python)
- Simulation plots obtained from the FCS model using Simulink vs. our tool are nearly identical
 - $|\text{error}| \le 6.1487 \cdot 10^{-5}$

Outline

Context and motivation

- 2 The RCRS framework
- 3 Translation of HBDs to RCRS
- 4 Expansion and simplification
- 5 Implementation and evaluation

Conclusion

- Compositional semantics of HBDs
- 3 translation strategies of HBDs to RCRS
- Implementation of the RCRS framework in Isabelle
- Evaluation on real-life automotive case study

Thank you! Questions?

Conclusion

- Compositional semantics of HBDs
- 3 translation strategies of HBDs to RCRS
- Implementation of the RCRS framework in Isabelle
- Evaluation on real-life automotive case study

Thank you! Questions?